Telegram Group & Telegram Channel
Language Agents as Optimizable Graphs [2024] - обучаем надстройку над LLM

Недавно я писал о том, что какая-то большая и сложная надстройка над LLM может дать какой-нибудь интересный результат. Нечто такое из себя представляет FunSearch, использующий LLM как генератор мутаций программ на питоне. Сегодня посмотрим на работу, в которой надстройка над LLM оптимизируется для высокой производительности на классе задач / бенчмарке. Сразу скажу - не фанат конкретно этой схемы, но направление мысли здесь задаётся неплохое.

Определим языкового агента как ациклический направленный граф. В нём вершины это различные вычислительные элементы - запросы к LLM, вызовы какого-нибудь API, использование инструмента и т.д. Соединены они между собой рёбрами, обозначающими, идёт ли выход из одной вершины на вход другой. В данной статье у нас заранее задаётся множество вершин, причём у LLM-вершин есть описание того, что именно они должны делать.

Итак, мы хотели бы построить граф, набирающий как можно больше в какой-нибудь задаче, например, бенчмарке GAIA. Оптимизировать можно 2 вещи - набор рёбер и промпты каждой вершины.

1) Рёбра оптимизируем с помощью REINFORCE. Граф генерируется случайно, и вероятность каждого ребра задаётся вероятностью-параметром p. С помощью REINFORCE по этим вероятностям можно оптимизировать недифференцируемую итоговую производительность графа на задаче.
2) Промпты у вершин оптимизируется через ORPO. Для каждой вершины оптимизация независима. Это имеет смысл в данном случае, т.к. функция вершины определена заранее и подаётся на вход оптимизатору.

Графы обучаются не с нуля, их "инициализируют" какой-то известной схемой (например, несколько Tree of Thoughts) и дальше "дообучают". Нельзя сказать, что у агента есть большой простор для оптимизации, однако, это уже лучше, чем зафиксированные вручную схемы. Ждём более хитрых и гибких параметризаций такого языкового агента, в которых набор вершин тоже будет оптимизироваться, а назначение каждой отдельной вершины не будет задано заранее.

@knowledge_accumulator



tg-me.com/knowledge_accumulator/167
Create:
Last Update:

Language Agents as Optimizable Graphs [2024] - обучаем надстройку над LLM

Недавно я писал о том, что какая-то большая и сложная надстройка над LLM может дать какой-нибудь интересный результат. Нечто такое из себя представляет FunSearch, использующий LLM как генератор мутаций программ на питоне. Сегодня посмотрим на работу, в которой надстройка над LLM оптимизируется для высокой производительности на классе задач / бенчмарке. Сразу скажу - не фанат конкретно этой схемы, но направление мысли здесь задаётся неплохое.

Определим языкового агента как ациклический направленный граф. В нём вершины это различные вычислительные элементы - запросы к LLM, вызовы какого-нибудь API, использование инструмента и т.д. Соединены они между собой рёбрами, обозначающими, идёт ли выход из одной вершины на вход другой. В данной статье у нас заранее задаётся множество вершин, причём у LLM-вершин есть описание того, что именно они должны делать.

Итак, мы хотели бы построить граф, набирающий как можно больше в какой-нибудь задаче, например, бенчмарке GAIA. Оптимизировать можно 2 вещи - набор рёбер и промпты каждой вершины.

1) Рёбра оптимизируем с помощью REINFORCE. Граф генерируется случайно, и вероятность каждого ребра задаётся вероятностью-параметром p. С помощью REINFORCE по этим вероятностям можно оптимизировать недифференцируемую итоговую производительность графа на задаче.
2) Промпты у вершин оптимизируется через ORPO. Для каждой вершины оптимизация независима. Это имеет смысл в данном случае, т.к. функция вершины определена заранее и подаётся на вход оптимизатору.

Графы обучаются не с нуля, их "инициализируют" какой-то известной схемой (например, несколько Tree of Thoughts) и дальше "дообучают". Нельзя сказать, что у агента есть большой простор для оптимизации, однако, это уже лучше, чем зафиксированные вручную схемы. Ждём более хитрых и гибких параметризаций такого языкового агента, в которых набор вершин тоже будет оптимизироваться, а назначение каждой отдельной вершины не будет задано заранее.

@knowledge_accumulator

BY Knowledge Accumulator




Share with your friend now:
tg-me.com/knowledge_accumulator/167

View MORE
Open in Telegram


Knowledge Accumulator Telegram | DID YOU KNOW?

Date: |

For some time, Mr. Durov and a few dozen staffers had no fixed headquarters, but rather traveled the world, setting up shop in one city after another, he told the Journal in 2016. The company now has its operational base in Dubai, though it says it doesn’t keep servers there.Mr. Durov maintains a yearslong friendship from his VK days with actor and tech investor Jared Leto, with whom he shares an ascetic lifestyle that eschews meat and alcohol.

Traders also expressed uncertainty about the situation with China Evergrande, as the indebted property company has not provided clarification about a key interest payment.In economic news, the Commerce Department reported an unexpected increase in U.S. new home sales in August.Crude oil prices climbed Friday and front-month WTI oil futures contracts saw gains for a fifth straight week amid tighter supplies. West Texas Intermediate Crude oil futures for November rose $0.68 or 0.9 percent at 73.98 a barrel. WTI Crude futures gained 2.8 percent for the week.

Knowledge Accumulator from ar


Telegram Knowledge Accumulator
FROM USA